
基数排序 vs 计数排序 vs 桶排序
这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:
- 基数排序:根据键值的每位数字来分配桶;
- 计数排序:每个桶只存储单一键值;
- 桶排序:每个桶存储一定范围的数值;
桶排序(Bucket sort)
桶排序,顾名思义,会用到“桶”,核心思想是将要排序的数据分到几个有序的桶里,每个桶里的数据再单独进行排序。桶内排完序之后,再把每个桶里的数据按照顺序依次取出,组成的序列就是有序的了。
排序的数据有 n 个,把它们均匀地划分到 m 个桶内,每个桶里就有 k=n/m
个元素。
每个桶内部使用快速排序,时间复杂度为 O(k * logk)
。m 个桶排序的时间复杂度就是 O(m * k * logk)
,因为 k=n/m
,所以整个桶排序的时间复杂度就是 O(n*log(n/m))
。当桶的个数 m 接近数据个数 n 时,log(n/m)
就是一个非常小的常量,这个时候桶排序的时间复杂度接近 O(n)
。
首先,要排序的数据需要很容易就能划分成 m 个桶,并且,桶与桶之间有着天然的大小顺序。这样每个桶内的数据都排序完之后,桶与桶之间的数据不需要再进行排序。其次,数据在各个桶之间的分布是比较均匀的。
如果数据经过桶的划分之后,有些桶里的数据非常多,有些非常少,很不平均,那桶内数据排序的时间复杂度就不是常量级了。在极端情况下,如果数据都被划分到一个桶里,那就退化为 O(nlogn)
的排序算法了。
桶排序比较适合用在外部排序中。所谓的外部排序就是数据存储在外部磁盘中,数据量比较大,内存有限,无法将数据全部加载到内存中。
实现思想
1 | function bucket-sort(array, n) is |
计数排序(Counting sort)
计数排序其实是桶排序的一种特殊情况。当要排序的 n 个数据,所处的范围并不大的时候,比如最大值是 k,我们就可以把数据划分成 k 个桶。每个桶内的数据值都是相同的,省掉了桶内排序的时间。
计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。
算法思路
- (1)找出待排序的数组中最大和最小的元素
- (2)统计数组中每个值为
i
的元素出现的次数,存入数组C的第i
项 - (3)对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)
- (4)反向填充目标数组:将每个元素i放在新数组的第
C(i)
项,每放一个元素就将C(i)
减去1
计数排序只能用在数据范围不大的场景中,如果数据范围 k 比要排序的数据 n 大很多,就不适合用计数排序了。而且,计数排序只能给非负整数排序,如果要排序的数据是其他类型的,要将其在不改变相对大小的情况下,转化为非负整数。
基数排序
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。
基数排序对要排序的数据是有要求的,需要可以分割出独立的“位”来比较,而且位之间有递进的关系,如果 a 数据的高位比 b 数据大,那剩下的低位就不用比较了。
除此之外,每一位的数据范围不能太大,要可以用线性排序算法来排序,否则,基数排序的时间复杂度就无法做到 O(n) 了。
- Post title:线性排序
- Post author:Varsion
- Create time:2020-08-08 22:28:55
- Post link:https://blog.varsion.cn/post/89c5f6b.html
- Copyright Notice:All articles in this blog are licensed under BY-NC-SA unless stating additionally.