链表
Varsion

链表结构

链表其实跟数组差不多,都是一群元素的集合。链表中的各个元素,称之为’节点’。一个节点也没有的链表,就是一个空链表。在非空的链表里,每个节点又分为两部分:第一部分是这个节点的容器,用来储存信息;另一部分是该节点指针,指向其他节点,以便我们将单个的节点串联起来。

数组需要一块连续的内存空间来存储,对内存的要求比较高。如果申请一个 100MB 大小的数组,当内存中没有连续的、足够大的存储空间时,即便内存的剩余总可用空间大于 100MB,仍然会申请失败。

而链表恰恰相反,它并不需要一块连续的内存空间,它通过“指针”将一组零散的内存块串联起来使用,所以如果申请的是 100MB 大小的链表,根本不会有问题。

单链表

链表通过指针将一组零散的内存块串联在一起。其中,把内存块称为链表的“结点”。为了将所有的结点串起来,每个链表的结点除了存储数据之外,还需要记录链上的下一个结点的地址。如图所示,我们把这个记录下个结点地址的指针叫作后继指针 next

其中有两个结点是比较特殊的,它们分别是第一个结点和最后一个结点。

习惯性地把第一个结点叫作头结点,把最后一个结点叫作尾结点。其中,头结点用来记录链表的基地址。有了它,我们就可以遍历得到整条链表。而尾结点特殊的地方是:指针不是指向下一个结点,而是指向一个空地址 NULL,表示这是链表上最后一个结点。

与数组一样,链表也支持数据的查找、插入和删除操作。

在链表中插入或者删除一个数据,我们并不需要为了保持内存的连续性而搬移结点,因为链表的存储空间本身就不是连续的。所以,在链表中插入和删除一个数据是非常快速的。

针对链表的插入和删除操作,我们只需要考虑相邻结点的指针改变,所以对应的时间复杂度是 O(1)。

链表的操作

有利就有弊。如果链表要想随机访问第 k 个元素,就没有数组那么高效了。因为链表中的数据并非连续存储的,所以无法像数组那样,根据首地址和下标,通过寻址公式就能直接计算出对应的内存地址,而是需要根据指针一个结点一个结点地依次遍历,直到找到相应的结点。

所以,链表随机访问的性能没有数组好,需要 O(n) 的时间复杂度。

循环链表

循环链表

循环链表是一种特殊的单链表,唯一的区别在于,单链表的尾结点指向空,而循环链表的尾结点指向头结点。

循环链表的优点是从链尾到链头比较方便。当要处理的数据具有环型结构特点时,就特别适合采用循环链表。(比如’约瑟夫环’)

双向链表

双向链表

双向链表,它支持两个方向,每个结点不止有一个后继指针 next 指向后面的结点,还有一个前驱指针 prev 指向前面的结点。

双向链表需要额外的两个空间来存储后继结点和前驱结点的地址。所以,如果存储同样多的数据,双向链表要比单链表占用更多的内存空间。虽然两个指针比较浪费存储空间,但可以支持双向遍历,这样也带来了双向链表操作的灵活性。

从结构上来看,双向链表可以支持 O(1) 时间复杂度的情况下找到前驱结点,正是这样的特点,也使双向链表在某些情况下的插入、删除等操作都要比单链表简单、高效。

单链表和双向链表之间的比较

删除操作

实际的软件开发中,从链表中删除一个数据无外乎这两种情况:

  • 删除结点中“值等于某个给定值”的结点
  • 删除给定指针指向的结点

尽管单纯的删除操作时间复杂度是 O(1),但遍历查找的时间是主要的耗时点,对应的时间复杂度为 O(n)。根据时间复杂度分析中的加法法则,删除值等于给定值的结点对应的链表操作的总时间复杂度为 O(n)。

第二种情况,已经找到了要删除的结点,但是删除某个结点 q 需要知道其前驱结点,而单链表并不支持直接获取前驱结点,所以,为了找到前驱结点,我们还是要从头结点开始遍历链表,直到 p->next=q,说明 p 是 q 的前驱结点。

对于双向链表来说,这种情况就比较有优势了。因为双向链表中的结点已经保存了前驱结点的指针,不需要像单链表那样遍历。所以,针对第二种情况,单链表删除操作需要 O(n) 的时间复杂度,而双向链表只需要在 O(1) 的时间复杂度内就搞定了!

如果希望在链表的某个指定结点前面插入一个结点,双向链表比单链表有很大的优势。双向链表可以在 O(1) 时间复杂度搞定,而单向链表需要 O(n) 的时间复杂度。

‘空间换时间’ 和 ‘时间换空间’

对于执行较慢的程序,可以通过消耗更多的内存(空间换时间)来进行优化;而消耗过多内存的程序,可以通过消耗更多的时间(时间换空间)来降低内存的消耗。

数组和链表的对比,并不能局限于时间复杂度。而且,在实际的软件开发中,不能仅仅利用复杂度分析就决定使用哪个数据结构来存储数据。数组简单易用,在实现上使用的是连续的内存空间,可以借助 CPU 的缓存机制,预读数组中的数据,所以访问效率更高。而链表在内存中并不是连续存储,所以对 CPU 缓存不友好,没办法有效预读。

如果你的代码对内存的使用非常苛刻,那数组就更适合你。因为链表中的每个结点都需要消耗额外的存储空间去存储一份指向下一个结点的指针,所以内存消耗会翻倍。而且,对链表进行频繁的插入、删除操作,还会导致频繁的内存申请和释放,容易造成内存碎片

基于链表实现 LRU 缓存淘汰算法

缓存的大小有限,当缓存被用满时,哪些数据应该被清理出去,哪些数据应该被保留?这就需要缓存淘汰策略来决定。常见的策略有三种:

  • 先进先出策略 FIFO(First In,First Out)
  • 最少使用策略 LFU(Least Frequently Used)
  • 最近最少使用策略 LRU(Least Recently Used)

我们维护一个有序单链表,越靠近链表尾部的结点是越早之前访问的。当有一个新的数据被访问时,我们从链表头开始顺序遍历链表。

  1. 如果此数据之前已经被缓存在链表中了,我们遍历得到这个数据对应的结点,并将其从原来的位置删除,然后再插入到链表的头部。

  2. 如果此数据没有在缓存链表中,又可以分为两种情况:

  • 如果此时缓存未满,则将此结点直接插入到链表的头部;
  • 如果此时缓存已满,则链表尾结点删除,将新的数据结点插入链表的头部。
  • Post title:链表
  • Post author:Varsion
  • Create time:2020-07-31 17:13:21
  • Post link:https://blog.varsion.cn/post/2362a8ea.html
  • Copyright Notice:All articles in this blog are licensed under BY-NC-SA unless stating additionally.
Comments